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6.1 Overview of Linear Programming
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747, born in the late 1960’s, was a tangible by-product of extended FEM analysis [6].

By the of the middle 1970’s, FEM had matured mathematically and reached a decent
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punch” (RFP) problem. Much work was imparted into the development of the mesh

for the RFP problem, and experimentation revealed that result accuracy is highly





CHAPTER 2

Preliminaries
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1. Ω̄ = ∪p
i=1Ω̄i
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Since

a2(w,w) = −
∫ 1

0

(w′′(x))2dx, (2.9)

function w
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vector field in a three-dimensional domain with a chosen coordinate system may be

represented by a triplet of functions, and a tensor field by a 3×3 matrix function. The
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CHAPTER 3

Finite Element Method

The process of solving a problem using the FEM can be broken down into five

steps.

1. Identify and represent the physical system – usually through the construction

of linear or nonlinear partial differential equations, and corresponding weak
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3.1 Approximation Techniques

Emphasis will be placed on one specific approximation technique called the
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The unknown constant a from the trial function must be tuned to help u

represent the true solution as accurately as possible. Introduce a
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The weighting functions, w1 = H1(1
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After defining the length of the spring as l = u2 − u1
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4.1 General Mesh Formulation

The basic goal of meshing is to divide some region of interest
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The so-called
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Claim. The area S
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Equivalent expressions for for Nj(x, y) and Nk(x, y) are obtained through obvious

permutations of the indices.
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Each velocity jump in (5.7) is the vector difference of the velocities of two
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with which to contend. Given two triangles n and m with vertices ijk and ilj that

share an edge ij
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The total power problem then becomes one of minimizing

Z
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the derivation of equation (5.28). The shared edge passed into the function as an

argument contains two of the nodes of each triangle. These become nodes i and j.

The third node, k



APPENDIX A

MATLAB Source Code

A.1 Distance from a Point to a Line

1 function d = dpointline(line, p)

2
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28

29 % Use desegment (unsigned) combined with sign from

30 % relative placement.

31 d = d + cond1 .* -dsegment(p, line);

32 d = d + cond2 .* dsegment(p, line);

A.2 Distance to nnnn
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30 % Normalize the distances to span 0 to 1

31 distN = (dist - minD) * (1 / maxD);

32

33
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71 % Finally, crop down both output matrices to the correct length

72 edges = edges(1:nEdges - 1, :);

73 tEdges = tEdges(1:nEdges - 1, :);
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77 end

78

79 % For convenience, assign values for each node in the paralellagram

80 % formed by the two conjoined triangles.

81 ni = nodes(dP(1, 1), :);

82 nj = nodes(dP(2, 1), :);

83 if nTri1 ~= 0

84 nk = nodes(dP(3, 1), :);

85 end

86 if nTri2 ~= 0

87 nl = nodes(dP(4, 1), :);

88 end

89

90 % Compute the power with respect to each nodal value.

91 dP(1, 2) = area1 * (dX * (nk(1) - nj(1)) + dY * (nk(2) - nj(2))) ...

92 - area2 * (dX * (nj(1) - nl(1)) + dY * (nj(2) - nl(2)));

93 dP(2, 2) = area1 * (dX * (ni(1) - nk(1)) + dY * (ni(2) - nk(2))) ...

94 - area2 * (dX * (nl(1) - ni(1)) + dY * (nl(2) - ni(2)));

95 dP(3, 2) = area1 * (dX * (nj(1) - ni(1)) + dY * (nj(2) - ni(2)));

96 dP(4, 2) = area2 * (dX * (ni(1) - nj(1)) + dY * (ni(2) - nj(2)));
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41 nodesTerm = ’’; % Holds unknown nodal value terms

42

43 % Build the unknown nodal value terms. Each term is added if

44
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